AD-A206 859

CENTER FOR PURE AND APPLIcD MATHEMATICS
UNIVERSITY CF CALIFORNIA, BERKELEY

70 SOLVE A REAL CUBIC EQUATION

W, KAHAN

* i .
TR A -

NovemBer 198t

89 4 18 045

PAM- 352

This repori was done with support from the Center for
Pure and Applied Mathematics. Any caonclusions or
opinions expressed in this report represent solely
those of the author{(s) and not necessarily those of
the Center for Pure and Applied Mathematics or the
Department of Mathematics.

Cubict WORK IN FROGRESS Nov. 14, 1986

To Solve a Real Cubic Equation LT A

(Lecture Notes Tor a Numerical AnalysIis Coursze) ™ o
W. kKahan .f:;ﬂ

Mathematics Dep't ‘ RS

University of California
Berkeley CA 94720
Nov. 10, 1986

Abstract: A program to solve a real cubic equation efficiently and as
dccurately as the data deserve is not yet an entirely cut-and-dried affair,
An iterative method is the best found so far. This method plus same ather
issues, like accuracy, scaling, preconditioning and testing, are
discussed in these notes in enough detail to convey an impression of what
Numerical Analysis is about.

1. Introduction:
Closed—-form formulas for solving the real cubic eguation

AX® + B2 + Cx + D = 0O
in terms of its coefficients A, B, C, D were discovered in the
sixteenth century by Italian mathematicians, but their triumph
turned into disappointment when they discovered an Irreducible
case:s the real cubic with three irrational real roots. This cass
entails unavoidably the computation of trigonometric functions and
their inverses during the evaluation of cube roots of a complesx
number. Nowadays trigonometric functions and complex numbers seem
uncbjectionable in a procedure that solves a cubic, . so they have
been used freely in a modern version of the Italians' formulas
presented below in 82 of these notes. Alas, the modern formula
is disappointing too, because it is potentially unstable in the
face of roundoff. Indeed, coefficients abound for which some of
the roots computed from the formula are quite incorrect; several
instances appear among the examples presented in 810 .

Whether a slight modification could protect the Italians’' formulas
from the worst effects of roundoff remains am open guestion. The
simplest stable version of those formulas I know is tantamount to
evaluating them twice, as is mentioned near the end of 8§82 . Two
evaluations take long enough to make plausible the possibility
that another approach might be faster.

Newton pioneered another approach when he first used the iteration
that now bears his name to solve a cubic. Computers can rollow
his approach provided certain details like where to start and when
to stop are mechanized. Those details are the subject of 8I , a
long discussion that culminates in a brief but entirely autcmatic
procedure presented as a program GBC in 84 . That discussion
provides merely a motive far the program, not a proof of its
correctness. A thorough proof would be far too lengthy to includs=
in these notes. Instead, the issues that such a proof would have |
to address will be explored and its conclusions summarized.

O . . ae . e e
MR S R S A LI P P J
LML ¥

1 . L 5
B e Gl Latar Ka

2 P ST S VIR m'y dye O f»._,vf!&'-j 1 ﬁ
e e ey o ik e 2T ig,‘) ‘/ /’2? ‘,wﬁ{

Cubicl WORK IN FROGRESS Nov. 10, 19864

The most difficult issue is inaccuracy caused by roundof¥. Error
analysis proves that every root computed by GBC is no more in
error than if it had been computed exactly from a cubic whose
coefficients differ from those given each by a few units in 1ts
last digit carried by the computer’'s floating-point arithmetic,
This kind of Backward Error Analysis was first published in the
late 1950's by James H. Wilkinson. It suggests that inaccuracw
introduced by the process of solving the cubic is unlikely to be
appreciably worse than inaccuracies previously introduced when the
coefficients were computed and rounded off. Therefore, if roats
obtained from GBC turn out too inaccurate for some ultericr
purpose, the trouble may lie not so much with GBC as with the
process that generated the coefficients. Thus does backward srior
analysis exculpate the programmer of GBRC. And it does more.

The uncertainty contributed to the computed roots by roundoff in
@BC can now be assessed by analyzing the effects upon those roatfs
of tiny perturbations of the cubic's coefficients, regardless of
the internal details of GBC . Even without those details., ths
analysis is tedious: only its conclusions are summarized in 835 .
Computed roots turn out normally to be accurate in all but their
last few digits; but in worst cases, when all three rocts cf the
cubic almost coincide, the computed roots can lose as many as two
thirds of the figures carried. Examples in 85, 87 and 810 bear
out this gloomy prediction, to which we shall return later.

Besides being too long to include in these notes, the proofs of
the foregeing claims to accuracy are at least as vulnerable to
error as the short program they are supposed to vindicate. Such
claims deserve credence only if they are supported by numerical
2xperiments. But rounding errors committed during the exwpariments
can confound the test results and obscure their implications. g6
discusses such issues and offers a partial remedy in the form of &
program REVAL that combines the evaluation of & cubic polynomial
with the simultanecus calculation of a rigorously correct bound
for the effect of roundoff upon that evaluation. REVAL 1is hkased
upon prior knowledge of a bound for the rounding error in evervy
floating-point arithmetic operation; that bound is characteristic
of the computer and deducible from attributes like the number of
significant digits it carries. REVAL and programs like it permit
the error in a computed root, regardless of its provenance, to
be overestimated with 2ase as rigorously as one likes and without
excessive pessimism provided the root lies far enough awav from
all the others. Clustered roots are a little harder to handle.

The previous two paragraphs may suggest (and it's widely believed)
that clustered roots of a cubic cannot be calculated accurately
unless arithmetic is performed carrying about three times as manv
significant figures as will be assuredly correct in thes computed
roots. That is untrue. Also untrue is another widely beliavad
myth about numerical computation, namely that numerical ariror 1S
caused by cancellation. In fact, o1 2almost all modern computers,
no new error is generated when subtractive cancellation ococuws;
the principal exceptions are CRAYs, CYBERs and UNIVACs. 0On TIERM
370's, DEC VAX's, ©SUN's, AFPFLE Macintoshes and Hewlett—-Fackard
calculators, to mention just a few, subtractive cancellation is
exact. This fact can be exploited to Precondition a cubic with

]
-~

Cubicl WORK. IN FPROGRESS Nov, 10, 1986

clustered roots, transforming it into a new cubic with relativelwv
well separated roots that are easy to calculate and transform back
into fully accurate roots of the original equation. A simplified
version of preconditioning, applicable principally to cubics with
integer coefficients, is described in 87 with examples that may
s1goest how the process would work in general. Thus have we
confronted two myths about roundoff and cancelled them both.

After roundoff, the second hazard to be overcome during numerical
computation is spurious over/underflow, an event that gccurs when
intermediate results would be so huge or so tiny as to lie outside
the range of numbers normally representable in the computer =2ven

though the desired final results lie within range. This hazard 15

ancountered only rarely, and then it can be overcome by Scaiing,
which is described in 88 .

The final few sections of these notes are archival. §9 presents
a collection of cubics with known zeros that help to test programs
like Q@BC or its competitors. §10 exhibits selected but typical
resuults obtained from our versions of the Italians’ formula and of
Newton's iteration (GBC) programmed into an HF-1EC handheld
calculator. The program for @BC is supplied in 811, and the
running times for both methods are compared briefly in 812

2. A Formula in "Closed Form” :

A cubic polynomial Ax3 + Bx?%? + Cx + D has three zeros X = K.,
Xa, %3 that can be expressed explicitly in terms of its given
coefficients A, B, C, D in many ways. The farmula chosen belnw
is one of the better ones, and has been arranged in the form of
an algorithm that can easily be programmed into a computer:

A, By, C and D are given real numbers.

If A=20
then { %3 = (|B| + |C} + |D[)/A 3 ... @ or /0 .,
p .= =-C/2 ; ... Next solve Bx?2 - Zpx + D=0 ...
g ‘= ¥(p? - BD) ¢ ... possibly an imaginary number.
if g is Real ey 1in which case g > 0 , ...

then { r = p + sign{(plqg ces =P 2 Qe
if r =0

then { ... Zeros are O or 0 or G/0 ., ...

Xy s= D/B 3§ xXa = -x, 3

else { %y :=D/r 3 Ha :=r/B 3

else { %, .= p/B + gq/B § a2 ‘= p/B - q/BE

/A

(W)

else { b = —(B/A)/T 3 ¢ .= i1 d := D/A ;
e Now solve N3 - Tbx2 + cx +d =0 “ea - e emeened
s := 3b2% - c ; '.r-,» —
t = (s-b¥)b - d 3 _g'
Now x = b - y where sy - y3 = t msggé
if s =20 i
then { vy, = —-t'/3 ; «s: the real cube root.
Ya += Yy (=1 + ¢/3) /2 ¥
else { u = ¥(45/3) § ... possibly imaginary.
v = arcsin((Zt/s)/W) /3 1 .. may be complex.
w .= (n/T)sign(Re(v)) =~ v § ... = +1/3 - v ...~
Ye = usin(v) 3§ yaz = usin(w) Yo Codes
Ky +=2 b — yy 3 Xz 1= b = ya 3 Ky = y, +tya + b N ifor |
c<us . upeclal

=,
-

Cubict WORK IN FROGRESS Nov. 10, 1986

This algorithm was programmed into an HP—-13C calculator without
difficulty. On many another machine programming might be impedad
by the absence of complex sin and arcsin from its libtrary of
elementary functions. Then the following formulas may help:

I+ =z2 > | then arcsin(z) = (n/2 - rarccosh(lzl)) z/jz!
If z 1is real, arcsin(ez) = tarcsinh(z) ,
cos(tz) = ecosh(z) , and
sin (=) = ¢sinh(z) . (2= ¢-1)
With the aid aof these farmulas and some algebraic manipulation,
the algorithm can be freed from all nontrivial complex arithmetic,
but only at the cost of intraoducing more case analysis. In placs
of the formulas involving complex arcsin and sin, there will
be three cases. 0One case handles s < O . If s > 0 (in which
case u » O too), there are two more cases according to where
I3t/ (su)] 1lies relative to 1 . But multiplying cases can anly

exacerbate the first of three Flaws that mar the algorithm:

First, the algorithm is complicated, and therefore vulnerable to
oversights. Have all singularities been considered and handled
correctly?

Second, the algorithm is vulnerable to over/underflow. Evern when
ail three zeros lie well within range, over/underflow can blight

the intermediate quantities q, r, s and t . The natural defense

against over/underflow is scaling 4 another complication.

Third, the algorithm is vulnerable to roundoff, particularly
when the zeros are of wildly different magnitudes; then the zeros
of smaller magnitude tend to be computed relatively inaccurately.
(Examples of inaccuracy can be found at the end of these nohes.)
All figures can be lost in any zero whose magnitude is smalletr
than a rounding error in b . One way to calculate the tiniest
zero more accurately is to obtain it as the reciprocal of the
biggest zero of A + Bz + Cz22 + Dz3 , which is tantamount to
running the foregoing algorithm a second time. To compute the
zero of middle magnitude, divide -D/A by the other two :zeros.

Another way to improve the accuracy of a zero is to use some kind
of iteration that improves approximate zeros by exploiting the
cubic's behavior near them; a short step past this thought finds
us contemplating whether the cubic might be better solved by an
al together iterative method than by explicit formulas. Just such
an iteration is the next topic discussed in these notes.

3. Newton's Iteration:

Given the resal cubic polynomial Q(x) = AN + Bx?2 + Cx + D , we

may use iteration Xaer 1= Xa = QXa) /8" (Xa) for n =0, 1, 2,y ...
to find a real zero of Q@) pravided we can solve four problers:
- How shall Q(X)/@ (X)) be calculated efficiently?

~ Where is a good place to choose the starting iterate Xo 7

- When should the iteration be stopped”?

- Having found one zero, how do we find the other two?

Cubicl1 WORK IN FROGRESS Nov. 10, 1986

The following scheme computes QX)) and @& (X) at the cost of
4 multiplications per itaration:

Qo = AX 3 gq, = Qe + B 3 Qz = WX + C 3
Q'(X) = (o + g:)X + Q=2 3 @A(X) = Q22X + D .
Three preliminary divisions of all the coefficients of (k) by

A could subseguently save one multiplication per iteration, Gbut
doing so would exacerbate roundoff and raise gquestions about over/
underflow, questions best answered by scaling all coefficients of
@ x) in advance in a way to be discussed in 88 below.

Finding a good starting iterate Xo 1is & balancing act amocng many
contending considerations. First comes the numerical stability of
the dJdeflation process by which, after a real zero has been
computed, it will be removed from the cubic to yield a quadratic
whose zeros are the remaining two zeros of the cubic. The process
of deflation is numerically stable unless the zero being removad
is much tinier than one zero of the quadratic but much bigger trhan
the other. Xo can be chosen to avoid that unstable situation.

A second consideration is speed. Newton's iteration converges
very quickly if started close enough to a simple zero, but
converges very slowly to a multiple zero. Therefore, Xo should
ideally bhe extremely close to a triple zero, if &{(x) has on=,
or else much closer to a simple zero than to a double zeroc if¥
RA(x) has both of those. Here i1s a way to choose such an Xe ¢

Assuming AD # © , let b = -(B/AY/3 ;3 r = JQ@(b)/AIYS = O
and s = sign(@)/A) = +1 . If @<b)/A > G then Xe = h - zr
else Xo 7= b - 1.324718 s maxi{r, V(- (b)/A)} . Why does this
choice work? The next paragraph will explain. To better follow’
its argument, read it repeatedly with reference to the graphs of.
say, X3 + ox + 2 for ¢ = -9, -, -1, 0, 1 and 3 superposs=d
upon each other to show how its leftmost real zero increases with
P . That leftmost zero is the goal of the iteration.

Why start iterating at Xo * Observe that GQ%(b) = 0 ; therefore
x = b at the inflexion on the graph of &(x) , and furthermore
Gib-y) = Qb)) - ' (b)y - Ay . I+ (b)/A > O then this cubic

is strictly monotonic with just one real zero vy that must lie
between vy = Q and y = sr ; otherwise the real zero vy farthest
from O lies hbeyond vy = sr and beyond vy = sy(-Q'(b)/A) too,
but not beyond both asr and Asy(-@'(b)/A) , where x» 1is the
real root X = 1.32471 79872 44746... o0of A3 = 2 + 1 . Since the
desired real zero X lies between the starting iterate X and
the inflexion point b , and the cubic is monotone between X and
Xoy Newton's iteration converges monotonically and rapidly to the
desired real zero. In the special case that Xo = b no further
iteration will occur because then b is the cubic’'s triple zero.

When should the iteration Xaeyr = Xa — B(Xa) /8" (X,) be stopped?
Except when Xo = b , we would expect sign{(Xps: - Xa} = s for
all n 3 but that expectation cannot persist indefinitely in the
face of roundoff. Ultimately roundoff must cause Xapey — Xa *toO
vanish or take the wrong sign, or cause &'(X,) to vanish: in
either case we shall set X .= X, and accept it as a real zero of
the cubic. 5Since any iteration could take too long to home in to
X =0 , which occurs if D = 0 , that case is segregatad. And

=
~J

Cubic1 WORK. IN FROGRESS Nov. 10, 1986

the guotient GQ/& rmust be replaced by (B/Q°)/71.000,..001 to
overcompensate for raundoff that could otherwise carry X, too
far beyond its goal. When X 1is extremely tiny, that extra
division prevents Xa from Jjumping over X to O , as otherwise
it would in one of the examples in 8§10 . Roundoff can cause yei
another kind of aovershoot when the cubic’'s three zeros are closely
clusteread; Xa can fall between two zeros. We avoid the warst
effects of this overshoot by accepting X = Xa instead of Xaer .
Our policies for handling roundoff and stopping the ifteration are
not the only possibilities, but they are among the simplest.

With one r=al zero X 1in hand, the next task is dJdetiation *to
obtain the gquadratic Ax2 + Byx + Ca whose zeros are the two
remaining zeros of the cubic. Here are the deflation formulas:
I+ X3 > iD/A] then { Cz ‘= -D/X 3§ B, .= (C2-C)/X 1}
else { By = AX+RB ;3 Ca2 = B4X+C I

eve (recall g¢ and qa2 above) ...
One formula for Ca comes from the product of the cubic's zeros,
-D/A = X Ca/A . The choice for By was derived from an srror-—
analysis that looked at the sum of the zerns, -~B/A =X - B, /4 .
and at the sum of their reciprocals, -C/D = 1/X - B,/Ca . to
find out which is l=2ast perturbed by the error in X . 0Of couwrse,
different formulas have to be used when A =0 or D=20.

Finally, formulas for salving a quadratic equation are taken +rom
the algorithm presented earlier.

4. Iterative Algorithm dBC : 7 .

The following algorithm, arranged to facilitate programming, 1is
complete except for scaling precautions against over/und=rflow.

It is broken into subprocedures that make it easier to understand.

Real Function DISC(a, b, c) = b2 - ac

ses Later, during the discussion of Preconditioning in 87 ,

«as another version of DISC will be presented that is more

.o+ Aaccurate when a, b, ¢ are all integers and not too big.
End DISC .

Procedure GQDRTC(A, B, C, X(+tY,, Xat+titY¥a2):
s OBiven real coefficients A, B, C , this procedure delivears
e:.e the twao zeros X ;+tY,; of the guadratic Ax2 + bBx + O .

b = -Br2 g g = DISC(A, h, O

If g < 0O
then { Xy = b/A H x: .= X| :
Yy += V(—q)/A H Ya .= =Y, 3
else { Y, 1= 0 ; Y2 1= O 3
r = b + signblvg ¢ ... = b + ¥g .
1+ ro=0
then < X| = C/A H Xz .= ‘X| h
else ¢ Xy ;= C/r ; X2 1= r/A >3
Return 3§ End QDRTC .

Cubicl WORK IN PROGRESS Nov. 10, 1984

Procedure EVAL(X, A, By C, D, @, @, By, C;y)

.« Given real X and real coefficients A, B, C, D 0of the

«.s cubic B(x) = Ax3 + Bx2 + Cx + D , this procedure computes

ses @ = QQX) , & = QX)) , By = AX+B and Cz = ByX +C ,
Qo = AX 35 By 1= qQqe+B ¢ Ca =B
@ = (C]o"‘E‘j)X"‘Cz H R = CaX +
Return 3 End EVAL .

Procedure G@RC(A, B, C, Dy X, Xi+2Y,, Xa+tY¥a)3
s+« Biven real coefficients A, B, C, D of the cubic
ses Ax3 + B2 + Cx + D, this procedure computes a real zero X
«as Aand two complex zeros X;+tY; of the cubic.
If A=0 then (X =0 A =B by /=C3: 2 :=D
go to ¥in > ;
If D=0 then { X =03 by =B 3 ca2 :=C :
go to Fin 3

X ;= —(B/A)/3F ; call EVAL(X, A,B,C,D, g, 9, by, c2., ;
ti=qg/A 3 r =3/t 5 s = sign(t; ;¢ ... = +1 .
t .=

-g'/A 3 if t > 0 zthen r = 1,3724718 max(r, vt} :
= X = 3 if No = X then go to ¥in ;
Do { X = %o 3 <call EVAL(X, A,B,C,D, g, 9, by, =2) 1
if g =0 then %o := X
else xXo += X = (q/qQ")/1.000,,001 >
until sxe < X 3 «a. Stop when xo # X .
If {AjX2 > [D/X|
then { ca := =D/X 3§ b, = (ca~C)/X i
fin: «call G@GDRTC(A, biy €2y Xi+2Ys, Xa+ttYaz) ;
Return ;3 End GBC .

X
(]
.

3. Accuracy:

A rigorous assessment of the effects of roundoff upon GBC would
be too complicated to include in these notes, but the conclusions
from such an assessment will be stated here, followed later in

§6 ("Testing Considerations") and 8§87 ("Preconditioning") by
some suggestions about what can be done about those effects.

Provided over/underflow does not intrude, QBC's combination of
iteration and deflation always produces results scarcely worse
than if the cubic's coefficients had each been perturbed by a few
rounding errors at the start. In the worst case, when the three
zeros of the cubic are all relatively nearly coincident, they mayv
be correct to as few as a third of the figures carried; such a
loss of accuracy also may afflict the closed form formula in that
case. The phenomenon is illustrated by the following example:

Consider the cubic x3 - 3x2 + 3x - (l-g) , where 1-¢ is the
number next less than 1 representable in the floating-point
format used during computation. The zeros of this cubic ars the

three values of 1 - ¢'/3 , For instance, if 12 sig. dec. are
carried during computation, 1-2 = 0.9999 9992 9999 and the real
zero 1 - £'/3 = (0,9999 . Changing the coefficient 1-z in its

12" sig. dec. to 1 changes all three zeros in the 4t tpo 1 .

In other examples, with two nearly coincident zeros relativelvy
far from the third, about half the figures carried can be lost

>

Cubic2 WORK. IN PROGRESS Nov. 8, 1986

regardless of how the cubic is solved. PBut GRBC never lases all
the figures carried, as the closed-form formulas can. Examples
to show what can happen will be presented later. Here 1s a

summary of the conclusions that can be drawn from error analvsis:

Each zero 7 computed by QBC's combination of iteration and

deflation is accurate almost to whichever is the largest af ...

- as many figures as were carried less the sum of the numbers of
figures to which the other two zeros agree with 7 , or

- half of the excess of the number of figures carried over the
number of figures of agreement between Z , one of & palr
of coincident or nearly coincident zeros, and a third zevrao
relatively different from the pair, or ...

- a third of the figures carried, 1i1f all three ceros are
coincident or nearly coincident with Z .

No way is known to calculate the zeros of a cubic more accurately
than if its coefficients had first been perturbed by roundoff,

unless part of the calculation is performed exactly -- wiith ro
roundoff at all. That exact calculation is part of a nrocass
called "Freconditioning", which will be described later ir &7

6. Testing Considerations:

The obvious way to test GBC is to supply it with arguments for
which accurate results have been calculated by some other method,
and then compare. On reflection, this test procedure is ot sc
obvious. What other methaod will give accurate results? Cubics
can be constructed with small integer coefficients and at least
one zero expressible as a ratio of small integers; but small
integer input data might fail to stimulate typical rounding
errors. And if results differ from what might ideally have b=en
expected, how does one decide whether the differences ars=
tolerables consequences of unavoidable rounding errors, or
symptoms of a defect in the program that must be repaired?

A simple procedure that seems at first free from the dilemmas 1is
to reconstruct the cubic from its computed zeros X, Y, Z by
expanding A{x—-X)(x=Y){(x-Z) in pawers of x . If the cubic s
reconstructed matches the given cubic well enough, the program
that computed the zeros camnot be too wirong. But how well is
"well enough" ? Presumably the reconstruction need match no mnora
accurately than if X, Y and Z were correct zeros each rounded
off to working precision (though actually they might be far la2ss
accurate than that); and the rounding errors that accrue during
the reconstruction process have to be allowed for too. It's not
so simple after all.

Program testing is fraught with anxiety unless one can estimate
mathematically how hig the errors should not be. Such an astimats
of uncertainty can be very difficultg I would much rather have to
write a program than have to analyze its errors ar test it.

The program REVAL below computes a rigorous and fairly sharp
bound A for the contribution of roundoff to the computed value
QA of a cubic Q(z) = AzS+Bz2 +Cz +D at the same time as it
computes R . REVAL requires knowledge about bounds for every

8

CubicZ2 WORE IN FROGRESS Nov. 3, 1986

rounding error committed by the computer in response to statements
like " 8 .= x+y i d = -y ;3 P = H#y 3 " in a prograim.
These assignments store in the computer’'s memory values s, d and
p slightly different from the ideal sum., difference and oroduact
desired. Almost every modern computer’'s arithmetic has its own
characteristic tiny constants =z and § that satisfy

fs - (s+y) | = 8ls] , id - (x=-y) | < &ld} , Ip — sty | < x| wsw |
for all non-pathologizcal values « and y representable in the
computer (ignore ® and over/underflow for now) . Tdeallv

§ = =z = (1.000,..001 - 1.000,,.,000)/2

but some computer arithmetics are somewhat worse, and many suffer
larger values of & for complex nmultiplication than for real.

To apply the foregoing inequalities to the 2rror analvsis of any
program that computes & , first decompose the program into a
sequence of simple assignments like
Qo = A%z § Qi T Qo+B 3§ ... i Qs :=Qx%z § @ = gs+D
Then replace them by the inequalities they actually satisty:
lgo — Az < elAzl 3 191 = (Qo+B) | < &la.! 3 ‘s

aee 3 la; —gaz| 4 =lgazl 3 @ — (qs #+ D) | = &iwl
These several inequalities boil down to one of the form
@ — (Az3 +Bz2 +Cx+D)t = A&

wherein A4 1is expressed in terms of ¢ and & and various
computed values. Hence, A can be computed too thus:

Frocedure REVAL(Z, A, B, C, D, a, A):
e Given real coefficients A, B, C, D, this procedure vi=lds
«.. an approximation Q to B(Z) = AZ3 + RZ2 +CZ + D and =
«e. bound A » 12-Q(ZY|{ , which would be zero if no roundof¥
... occurred. Instead, constants & and & that reflect the
«s. Computer’'s roundoff must be put into the program. A biager
«aa £ may be needed for complex arithmetic thanm for real.

e = [Afzs/(z+8) ; ’
Qs = AZ +B ;3
[«F . = q;Z + C
2] t=q32 "‘D,
Return ;§ End REVAL .

1Z1l e + [g.l 3
iZie + ({qal 3
(g+8) [Zle + (@8 ;

=
®
-
e

=

e
e
1)

How might REVAL be tested? After proving that no computed value
of @ can differ from an accurate evaluation of @<(Z) by more in
magni tude than 4 , we have to show also that the error bound A
is not so pessimistic as to be useless. Amang large collections

of trial data, A should sometimes barely exceed |2 - Q(Z)| ;

the only way to verify this is to compute Q(Z) more accuratelv.

This procedure REVAL can serve to test the quality of 2 as an
approximate zero of the cubic; compute the quotient fQl/a . A
quotient no bigger than 2 , say, indicates that no substantial
improvement in the accuracy of Z 1is likely to be achieved unless
arithmetic is carried out to higher precision. 0Of course, 1f vou
believe GGRC works correctly you must believe that [@|/4 will
be fairly small at every computed zero, in which case you'll not
bother to compute that gquotient. But REVAL has another use.

CubicZ WORK, IN PROGRESS Nov. 8, 17864

-y

A bound upon the error in any approximate zero Z can be detrived
from REVAL's bound & > |@-QZ)| , among other things, no
matter what the praovenance of Z . If Z 1is accurate enough. on=
step of Newton's iteration from Z to Z - Q(ZHY/y ¢Z2) nearly
doubles its number of correct digits, 1in which =zase QCZyY A0 (2D
must approximate the error in £ fairly closely. That gquotient
is never much smaller tham the error because, in general, (=)
must have a (possibly complex) zero 2z no farther from Z than
IR/ A(ZYL 4, according to a theorem of Laguerre. FEVAL's
{21+A& overestimates {QCZ) 1 3 and an estimate of (Z) cones
either from AZ?2 +g,Z+Qqg2 , as in EVAL, or from AZI-X){(Z-Y)
where X and Y approximate the other two zeros of the cubic. One
way or another, (1 +A /1R (Z)] provides at least a rough bound
for the error in 2 .

A rigorous error bound derived from Laguerre’'s theorem requires
a rigarous lower bound for |&@'(Z)] , which could be obtained
from an augmented version of REVAL that accounted for roundoff' s
contribution to @' (Z) as well as to G(Z) . Alternatively, if
approximate zerogs X, Y, I are in hand, three calls to &~REVAL
would help overestimate the right-hand sides of the inequalities

Ix=X1 < ZIQX) [/71AX=Y)(X-2Z)] ,

ty=YiI < ZJIQ(Y)YI/Z]AY-2) (Y=X)] and

fz=Z1 < JIQUIYI/71AZ-X)(Z-Y) 1
which rigorously bound the true zeros x, y, z of @ unless they
are clustered so closely that these three estimates overlap. But
rigorous bounds differ significantly from the previous parajgraph’s
rough bounds only when zeros are clustered, and then time spent
to get rigorous but probably dismal bounds might be better spent
computing more accurate zeros with the aid of preconditisgning.

7. Preconditicning:

Since error bounds are so often pessimistic, one might susg=act
that error analysts are pessimists too. Actually, arror analysts
are less interested in over-estimating error than in diminishing
it. One way to diminish roundoff error is preconditioning, =a
process that transforms a problem hypersensitive to roundoff into
& problem that is similar but far less sensitive.

The simplest illustration of the process concerns a quadratic
equation in the form

ax? - zZbx + ¢ = 0 ,
a form more convenient for our purpose than the usual form
A2 + Bx + C = 0O from which we get the desired form by setting
a .= -2A, b =B and ¢ .= -2C . This equation is hypersensitive

to rounding errors and also to any other perturbations of its
coefficients just when its raoots are relatively nearly coincident,
in which case computed roots can be inaccurate in almost halsf the

figures carri=ad. For instance, when a = 100002 ., b = 100OG1
and c = 100000 , the true roots x = 1 and x = 0,9999800004,,.,
differ in their 3I*" digits from the double root i« = 0,9999?00302

computed on a 10-digit calculator using the familiar formula
= (b + ¥(b?-acl))/a :

but the computed roots are just what would have been obtained in

exact arithmetic had the coefficients b and ¢ first been alteresd

in digits beyond their 10t®d to b = 10QQ01. 00000 QOOO4L and

10

CubicZ2 WORK IN FROGRESS Nov. 8, 1986

c = 100000, 00007 Qe PP 00008 . Such tiny perturbations are
enough to cause relatively serious errors in Y (b2-ac) , errors
avoidable anly by carrying in worst cases twice as manvy sig. dec.
11 our computations and honoring twice as many sig. dec., in the
coefficients as we wish Lo guarantee correct in computed rocts.

When are the coefficients likely to be known so accurately? Most
likely when they are known exactly, and then most likely when
they are integers. Therefore, let us consider the case when a .
b and ¢ are all integers and, to simplify the exposition, 12t
us assume that they are representable exactly in floating-point
with a digit to spare. This means integers with no more tharm %
digits on a 10-digit calculator, no mare than 27 bits on A
computer that performs binary floating-point with 24 s1g9. bits,
[f the coefficients were rather smaller than that, so small that
the products b2 and ac were both representable exactly, then
the discriminant g = b%*—-ac would be fully accurate enough tc
produce entirely satisfactory results from a program like LDRTC
above. That state of affairs is the goal of the preconditioning
function DISC presented below. Without changing g = b2-ac ,

it successively diminishes the integers a, b, ¢ until eithar ac
is negative or it differs enough from b2 that DISC = b2 -~ ac
can be computed contaminated only relatively slightly by roundaf¥f,

Real Function DISC(a, b, c):
.»» OBiven integers a , b, c all small enough to fit exactly
c.. 1into floating-point with at least a digit to spare, return
..« DISE = b2%2 - ac with roundoff confined to its last sig. dec.
If ac > O then
{ a = lJal 3 ¢ = |cl 3
loop: if a < ¢ then swap(a, c) 3 ... now O < ¢ < A&
n := integer nearest b/c ; .o in-b/ct < /2 .
if n # O then .o (elgse b2 < c2/4 < ac/4)
{ & :=a-nb 3 e exact if o > —-a
if « > -a hen ‘e (else b2 Tac >
{ c 3 . e ibl & c/2

b 3
f a > 0 then go to loop ¥ ¥ 3 1
Return DISC .= b2 - ac 3 End DISC .
After substituting this preconditioning function DISC for the
function DISC that accompanies the procedure GDRTC above, we
can compute the desired roots X,+tY, of our quadratic to nearly
full accuracy by calling @GDRTC(a, -2b, c, X,+2Y,, Xa+t1i¥a2) .
When applied ta our example above, DISC(1000Q002, (Q0Q01, 10QAQGO)
finds n =1 and reduces a , b , ¢ successively to
« = 100002 ~ 100001 =1 4, b = 100001 - 100000 =1 , a=1-1=20
and then returns DISC = { correctly having exploited massive
cancellation without error. Here are some more examples:

1t

Cubicz WORK IN FPROGRESS Nov. 8, 1986

a b c crude DISC refined DISC true bZ2-ac
3234424085 1160927837 414690270 398000000000 397448345600 397448345619
32374413351 1160928203 4146490636 -8%2000000000 ~89046033146390 -B9040331627

8952751441 1557629 71 0 114 114
8992751442 1557625 271 0 -1357 -137
3309162499 2301700899 997864924 -6000000000 -5110876875 -5110876873
5309162499 2301700899 997864923 0 1982835624 198285624
5309162499 2301700899 997864922 5000000000 3507448123 5507448123

All columns but the last were obtained from versions of DISC programmed into
the HP-15C, a ten-figure calculatar. The last caolumn comes fram the HP-7IB,
a twelve-figure machine, using a faster versian of DISC that exploits the
INEXACT flag provided by IEEE standard p854, to which the HP-71B conforms:
DEF FNgta,b,c) ' ... g = b"2 - a#c more accurately. (in 845/(C)
10 = FLAG(INX,0} ' ... saves and resets INEXACT flag.
“loop’: b0 = b#p & a0 = a#c ! ... Are they exact?
IF FLAB(INX,i0)=0 OR a0<{=0 THEN &60OTO "fin’
IF ABS(c)>ABS(a} THEN a0=a @ a=c @ c=a0 ' ... swap(a,c!
bO = RED(b,c) @ n = IROUND((b-b0O)/c) ! ... RED is IEEE ren
il = FLAG(INX,0) ' ... resets INEXACT flag.
a0 = (a - n#*b) - nxbo0
IF FLAG{INX)=0 THEN a = a0 @ b = b0 @ GOTO "loop’
‘fin’: FNq = b#b - a#c @ END DEF

An idea similar to that in DISC , but applied very differesntly,
serves to precondition the cubic equation
q(x) = and - Jbx?2 4+ Tex - d = 0
when all its coefficients except perhaps d are integers
representable exactly in floating-point with at least & digit or
two to spare. Q(3BC will calculate the equation’'s roots but, 1in
the light of error analyses mentioned above, we must expect the
calculated roots to suffer badly from roundoff whenever they are
clustered. Fortunately that possibility, clustered roots, <can
pe recognized easily without any call upon QBC ;3 if all three
roots are nearly coincident then all three quotients b/a, c/b and
d/c must be nearly coincident too. In fact, a little algebraic
manipulation suffices to prove that the gquotients match to bevond
twice as many sig. digits as are common to the roots. To exploit
this phenomenon, choose A to approximate all three guotients
rounded to no more sig. digits than are left unoccupied by the
first three coefficients; this means that all three products 3a,
»b and Aac will be computed exactly in floating-point arithmetic,.
Next replace x by A+y in the given equation to get a new cubic
gix+y) = ay? - Ib'y? + Ic'y - d* = O

which GBC can solve for roots vy , whence x = A+y | rmnuch mors
accurately than before. New coefficients must be calculated thus:

d =d - Ac c' :=c - Ab 3 b" = b - xa

d* :=d - ac’ c*' :=c - Ab" g

d® = d* - ac"' .
Cancellation will occur in the first row without error; and if
rounding errors do occur later they will be far tinier than what
@BC would likely inflict upon the original coefficients. When
all three roots x are extremely close, so0 close that all three

12

Cubic?2 WORK IN PROGRESS Nov. 8, 17854

roots vy must be relatively nearly coincident too, no rounding
errors will accur during the calculation of the new coefficients
b’y ¢* and d®*, and then the foregoing transformation may be
repeated advantageously with a new tinier X .

When two roots are nearly coincident but relatively far from the
third, the three quotients above must be replaced by two values

(1/2) (b ~ ad) / (b? - ac) and +¥/((c?2 — bd) /(b2 - ac)) .
They can be shown to match to about twice as many sig. digits as
are in agreement between the two nearly coincident roots; and 3
must approximate those two values rounded to at most half as many
digits as are left unoccupied by the first three coefficients, so
that all three products A%2a, A2b and Ac will be computed exactly
in floating-point arithmetic. Then the new coefficients and tha
roots » = x+y rmay be calculated as abaove except when d turns
out to be small compared with ax3 . In that special case, the
third root will be rather smaller than the two that are ne=arly
coincident, so it may well be computed more accurately fraom the
original coefficients than from the new aones. Moreover, 1n case
d 1is small and not an integer, the formulas for d', d' and d*°
should be changed as follows for better accuracy in the nearly
coincident roots A+y @

D = integer nearest d § :=d-D ;

d '=D-ac 3 d" ;=d —-ac’ § d* ;= (d*-2xac") +5 .

A detailed explanation to justify the foregoing procedures is too
complicated *o include in these notes. Instead, a few examples
will illustrate the schemes’ efficacy.

These examples were all worked out on an HP-1SC calculator, which carries 10
sig, dec. First the zeros x of each given cubic gq(x) were abtained fram a
program like @8BC , listed at the end of these notes, to see haw inaccurataly
it computes clustered zeros, Then quotients of coefficients were examined to
determine a choice of) from which new coefficients of g(i+y) were derived.
The intermediate results of this computation are displayed below with strings
of leading "0's" to denote digits that cancelled off. Then @&BC was rerun
to comoute the zeros vy af q(i+y) , from which were abtained improved zerns
% = A+y whose correctness was verified on an HP-71B carrying 12 sig.dec.

@(x) = 4638x3 - 190123x2 + 18311811x - 587898144
@BC: x = 96.297 , 946.341 , 96.305
b/a = 96.31458947 c/b = 96.31458777 d/ec = 94.,31458582 A= 34,

[

a = 458 b = 43373 c = 6103937 d = 5878981544
b’ = 00009.6 €' = oo00924.3 d’ = 000089030.9
c" = 000.02 d" = 00001.,35
d* = -0.374

@(x+y) = 4&3By3 - 28.8y2 + 0.06y + 0.374
@BC: a+y = 96.22963939, 96.35704483 + 0.06974973204 ¢

Cubic? WORK IN PROGRESS Nov. 10, 1986

@¢x) = 2212111x3 - 73449x2 + 813x ~ 3
@BC: x = 0,011096%92665 , 0.01105309967 + 0,0002009029431 ¢
b/7a = 0.0110677 c/b = 0,0110689 d/c = 0.0110701 A= 0,011

a = 2212111 b = 24483 c = 271 d = 3
6’ = -goo7!.432!1 ¢’ = ~poo.74613 d' = -o.po08t
c' = 0.03159621 d" = 0.00035043
d* = -0.000000289041
Qixey) = 2212111y3 + 214,29463y2 + 0.09478893y + 0.000000289041

QBC: A+y = 0.01109693006 , 0.01103309791 + 0.0002009034814¢

M is not critical, nor is a small rounding error in d® . Here is the
previous example repeated with a different A oe= 0,01107 ¢

a = 221211t b = 24483 ¢ = 271 d =3
b" = -00005.06877 ¢’ = -000.02681 d’ = g.00003
c" = 0,0293012B39 d" = 0.0003247867
d® = 0.0000024214872..
Yet 4QBC delivers practically the same final results X+y as bafore.
B(x) = A111x3 ~ J1792x2 + (09737x + 0.00623
BBL: x = =5.677209907,0-8 , 4.237477594 , 4,237731105
(hc-ad)/(2¢(b2-ac)) = ¢({(c2-hd)/(b2-ac)) = 4.23740434% Y o= 4,243
a = 6111 b = 17264 c = 34379 D = 0 $§ =4 = -0.00823
b’ = -08646.64 ' = ~-36420.34 d’ = -133094.94
c® = 00041.3934 d" = 000175.3664
d® = -ooo. 148694
@irey) = 6111y3 + 25939.92y2 + 124.1B08By + 0.148694

@BC: +y = -0.0000000356 , 4.237583786 , 4.237624911
d is sa tiny that the }solated root is best calculated directly from 8(x),

— —— — S S s T s e e Skt S, S D Gt ok, i S PO S S s Tt s S Aok S (1A S o oes $1mm e 10048 e s

The foregoing discussion may promote a misleading impressiom that
preconditioning is worth while only if the data (coefficients) ars
given exactly. Other circumstances do exist when preconditionming
helps, however. For example, the errors in the data could he
correlated in a way that is known to mostly cancel in the results.
Or the coefficients, though uncorrelatedly erronecus, may figure
subsequently in several related contexts among which consistency
of some kind is essential even though ultimate accuracy is not.
For instance, suppose a program uses the zeros of the cubic and
also of its derivative; Rolle’'s theorem implies that the latter
zeros should lie between the farmer when they are all real, and a
theorem due to Gauss places the latter inside the convex hull of
the former when they are complex. If those relationships are
violated by clustered approximate zeros computed too inaccuratelvy,
the subsequent logic of the program could malfunction. Adapting
that logic to disordered zeros can be far more complicated than
preconditioning in a way that protects their order from roundof+.
However, preconditioning procedures appropriate for noninteger
data go far beyond the scope aof these notes.

14

CubicX WORK IN PROGRESS Nov. 10, 1986

8. Scaling Invariance vs. Over/Underflow:
The factored form oFf the cubic

AXS + Bu2 + Cx + D = A(x - X) (x = ¥Y) (x = Z)
provides a factorization for the scaled cubic
(rAIX3 + (rBe)I X2 + (sCp2)X + (D03 = A (x —9X) (X — oY) (x —pZ)
If the scale factors ¢ and ¢ are powers of the radix ¢ 10 for
a decimal calculator, 2 for a binary computer), then the scaled
coefficients ¢A, B, oCe2, sDe3® will have the same significant
digits as the original coefficients A, B, C, D : only the
decimal or binary points will have shifted. Therefore the csame
should be true of the scaled zeros ¢X, 2Y, ¢Z , even in the faca

of roundoff. OFf course, the relationship between the scaled
zeros and the original zeros X, Y, Z must break down when the
scale factors are so big or so tiny that the scaled coefficients
or zeros over/underflow; ideally the relationship should not
break down for any other reason. In practice, most algorithmns
are vulperable to spurious over/underflow. For instance, the
discriminant q in Q@GDRTC and the quotients r and t in GRC
can easily over/underflow even thaough the coefficients and zerns
lie well within range. Conscientious programmers introduce scale
factors into their programs either tao forestall undeserved aver/
underflows or to recover from them, The task is not eased by the
absence from most programming languages of any reference tao over/
underflow other than an implication that the crime will be
punished by termination of the program's execution.

Here is how a scale factor ¢ can be chosen to prevent spurious
over/underflow during the solution of a quadratic equation

Ax2 + Bx + C = 0O ., If- A=0 or C =0 the solution is obvious.
Otherwise choose « tQ be a power of the radix near VIial Vit
and so chosen that neither A/s nor C/r can aver/underflow. Tieam
| (A/s) (C/r) | cannot be orders of magnitude larger or smaller than
1 . Next compare |[|B] with « ;3 1if [BI is so much bigager than

v that IBl +» rounds to |B| , then the guadratic's roots are

approximated accurately enough by -C/B and -B/A . 0Otherwizse

call GDRTC(A/c, B/ovy C/r, X, + ¥y, X2+ tY2) , allowing
underflows to flush to © 1if nothing better is available. No
undeserved overflow will occur.

Similar ideas can help suppress spurious over/underflows when
solving the cubic. Roughly speaking, when A/B is very tiny,
much tinier than roundoff in numbers nmear 1t , but B/C is not
tiny at all, then the cubic’'s biggest zero must be very nearlv
-B/A , and the other zeros can be found by setting A = O and
solving the resulting guadratic equation. And when D/C is very
tiny but C/B 1is not, the tiniest zero is very nearly -D/C ,
and so on. When neither A/B nor D/C is very tiny, the cubic
and its zeras can be scaled and computed in the ordinary way.

